Polymer-free DES in Elderly Patients

Byeong-Keuk Kim, M.D. Ph

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

NSEI UNIVERSITY COLLEGE OF MEDICINE /ERANCE CARDIOVASCULAR HOSPITAL

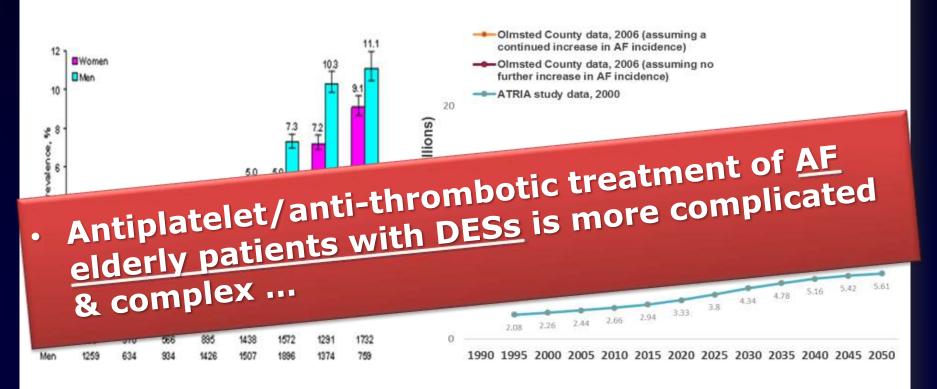
1. Nothing to disclose regarding the slides

YONSEI UNIVERSITY COLLEGE OF MEDICINE EVERANCE CARDIOVASCULAR HOSPITAL

Elderly Patients undergoing

→Because the population is aging …
Elderly patients are prominent group !!!

- CAD lesions in elderly patients are complex, severe, and diffuse
- <u>Non-cardiac surgery</u> could be more frequently performed
- Incidence of <u>atrial fibrillation</u> is higher
 - Poorly represented in prior studies on DES and DAPT duration
 - No clear recommendation for PCI and DAPT strategies


Often treated with BMS and short DAPT, as a strategy to reduce bleeding complications.

1 Atrial Fibrillation in elderly patients

• Epidemiology of AF (US), Disease of elderly patients

- 2% at the age of 60, increasing to 10% at the age of 80
- US: 2-5 million now, 5-12 million by 2050

AF: Atrial Fibrillation

Miyasaka et al. Circulation 2006;114:119-25 Go et al. JAMA 2001;285(18):2370-2375

SENIOR-PLATELET study

Rate of high platelet reactivity (PRU>235) in patients treated with an MD of 75 mg of clopidogrel

Silvain et al, Eur Heart J 2012

3 Non-cardiac surgery in elderly patients?

- Discontinuation of antiplatelet therapy was commonly associated with non-cardiac surgery in DES-treated patients.
 - Surgeons usually requested to discontinue antiplatelet therapy for bleeding control.
 - However, current guideline still recommended that the elective noncardiac surgery should be postponed at least 3 or 6 to 12 months after DES implantation and to keep antiplatelet therapy.
- As the patients is getting old, non-cardiac surgery is more frequently performed.

However, impact of age on the incidence and timing of noncardiac surgery after coronary stent implantation was not sufficiently evaluated.

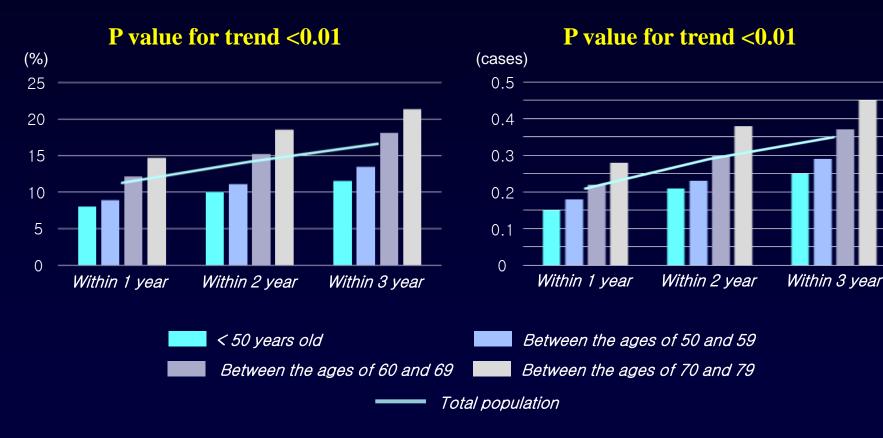
Objective & Methods

 ... evaluated the <u>incidence and timing of non-</u> <u>cardiac surgery after DES</u> implantation <u>according to</u> <u>the age</u>.

A total of 37,915 consecutive patients treated by DES implantation between 2000 and 2014 were included in this retrospective study.

Methods (1)

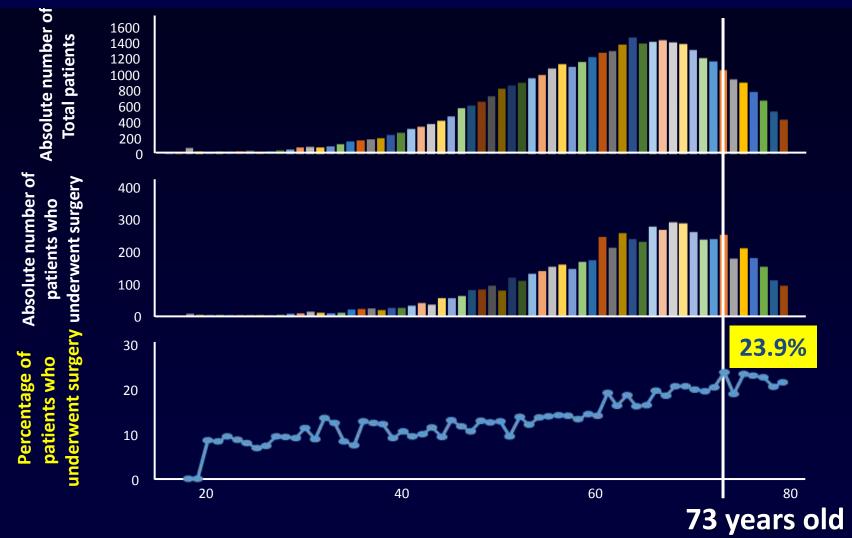
- <u>4 groups according to the patients' age</u>:
 - 1. under 50 years (n=5,785)
 - **2.** between the ages of 50 and 59 (n=9,639)
 - **3.** between the ages of 60 and 69 (n=13,566)
 - 4. between the ages of 70 and 79 (n=8,925)


- No of patients who underwent non-cardiac surgery:
 - 1. 4,263 (11.2%) within one year,
 - 2. 5,357 (14.1%) within two years,
 - **3.** 6,311 (16.6%) within three years after DES implantation.

2018 Manuscript submitted

Incidence of non-cardiac surgery after DES implantation according to the age

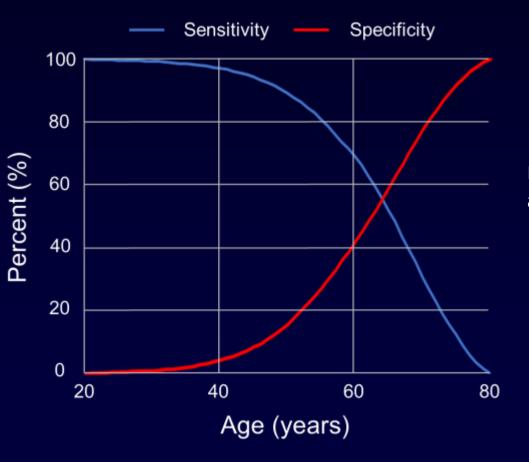
%Patients underwent surgery


Mean number of surgery

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

No. and percentage of patients who underwent noncardiac surgery within 3 years


The percentage of non-cardiac surgery within 3 years after DES reached the peak in the patients' age of 73 years

Incidences of non-cardiac surgery within one year after DES implantation

- 1. under 50; 8.0% (461/5,785),
- 2. 50-59; 8.9% (855/9,639),
- **3.** 60-69; **12.1%** (1,636/13,566),
- 4. 70-79; **14.7%** (1,311/8,925)

(p-value for trend <0.01).

Cut-off age

Best predicted to increase No. of non-cardiac surgery within one year after DES implantation

: 62 years old

-Sensitivity 60.7% -Specificity 51.9%

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 BY THE AMERICAN COLLESE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

CORONARY

Short-Term Versus Long-Term Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation in Elderly Patients

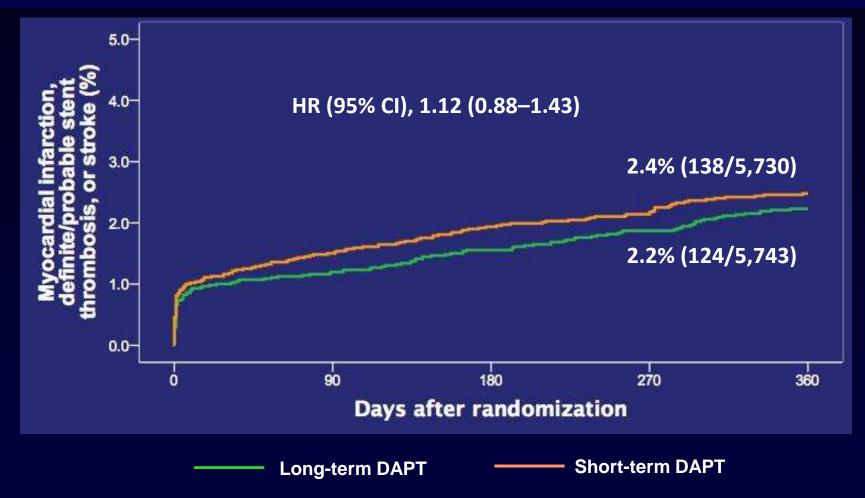
A Meta-Analysis of Individual Participant Data From 6 Randomized Trials

Seung-Yul Lee, MD,[#] Myeong-Ki Hong, MD, PBD,^{h,d,d} Tullio Palmerini, MD,[#] Hyo-Soo Kim, MD,^f Marco Valgimigli, MD,[#] Fausto Feres, MD,^h Antonio Colombo, MD,[†] Martine Gilard, MD,[†] Dong-Ho Shin, MD,^{h,c} Jung-Sun Kim, MD,^{h,c,d} Byeong-Keuk Kim, MD,^{h,c} Young-Guk Ko, MD,^{h,c} Donghoon Choi, MD,^{h,c} Yangsoo Jang, MD,^{h,c,d} Gregg W. Stone, MD^k

6 randomized trials comparing short-term DAPT (3 or 6 months) with longterm DAPT (12 or 24 months) were included [N = 11,473].

Primary study outcome
 12-month risk of a composite of
 MI, definite or probable ST, or
 stroke.

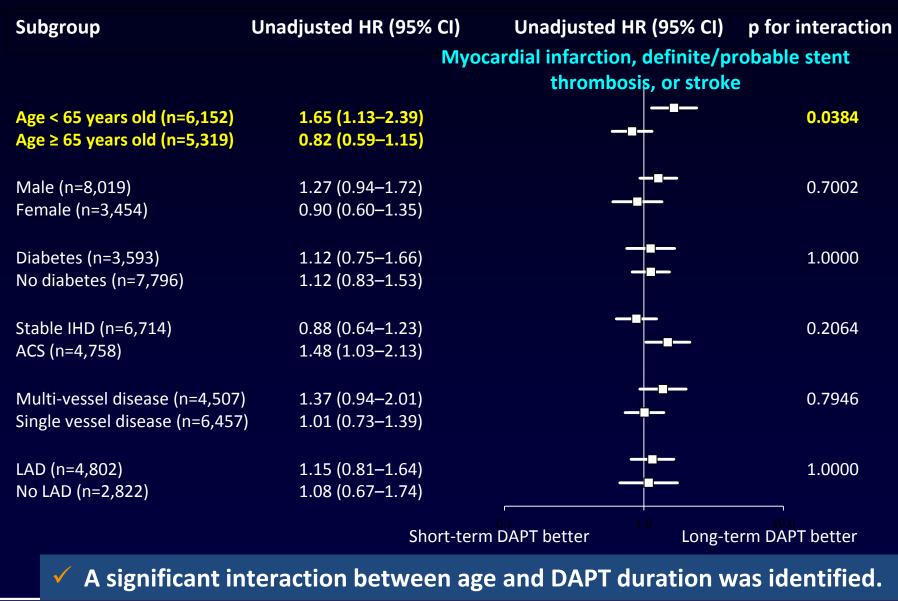
DAPT random trials using new-generation DES


- RESET (REal Safety and Efficacy of a 3-month dual antiplatelet Therapy following E-ZES implantation)

VOL. 11. NO. 5. 2018

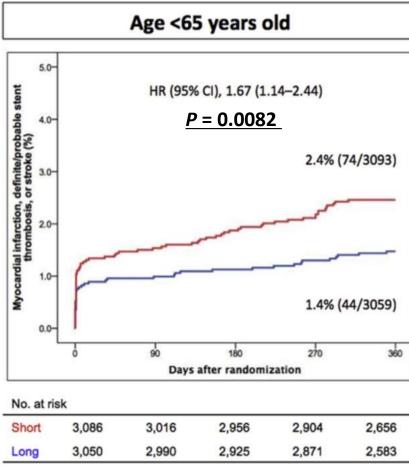
- EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting)
- PRODIGY (Prolonging Dual Antiplatelet Treatment After Grading Stent-Induced Intimal Hyperplasia Study)
- OPTIMIZE (Optimized Duration of Clopidogrel Therapy Following Treatment With the Zotarolimus-Eluting Stent in Real-World Clinical Practice)
- SECURITY (Second Generation Drug-Eluting Stent Implantation Followed by Six- Versus Twelve-Month Dual Antiplatelet Therapy)
- ITALIC (Is There A LIfe for DES After Discontinuation of Clopidogrel)

Cardiac and Cerebrovascular Events: All Patients



The risk of primary outcome was **not significantly different between short-term and long-term DAPT** in overall patients

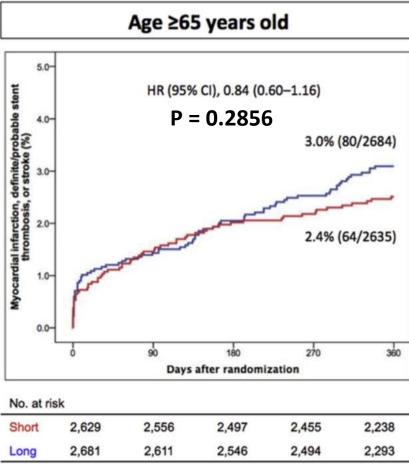
Lee & Hong et al. 2018 JACC interv



Cardiac and Cerebrovascular Events: All Patients

Events of MI, ST, or Stroke at 12 Months Stratified Based on Short- and Long-Term DAPT, and Grouped by Patient Age (Either <65 or ≥65 Years of Age)

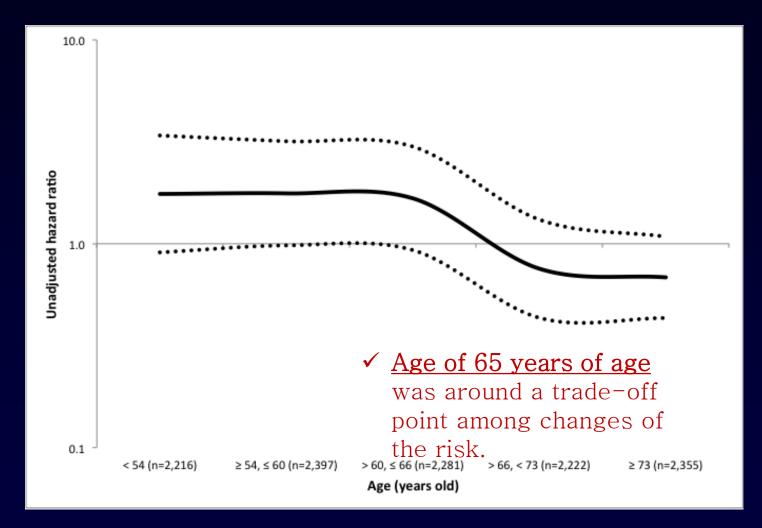
	=6-Month DAPT (n = 3,093)	12-Month DAPT (n = 3,059)	Unadjusted HR (95% CI)	p Value	Adjusted HR (95% CI)	p Value
All-cause death	21 (0.7)	41 (1.3)	0.50 (0.30-0.85)	0.0097	0.51 (0.30-0.88)	0.0154
Cardiac	13 (0.4)	25 (0.8)	0.51 (0.26-1.00)	0.0500		
Noricardiac	8 (0.3)	16 (0.5)	0.49 (0.21-1.14)	0.0989	12	-
Myocardial infarction	60 (1.9)	37 (1.2)	1.59 (1.05-2.39)	0.0275	1.56 (1.03-2.36)	0.0355
Definite or probable stent thrombosis	14 (0.5)	10 (0.3)	1.37 (0.61-3.09)	0.4447		-
Stroke*	9 (0.3)	6 (0.2)	17			-
Bleeding	29 (0.9)	37 (1.2)	0.76 (0.47-1.24)	0.2724	0.74 (0.45-1.22)	0.2437
Major	9 (0.3)	15 (0.5)	0.59 (0.26-1.34)	0.2073	-	-
Minor	21 (0.7)	22 (0.7)	0.93 (0.51-1.69)	0.8029		-
Myocardial infarction or definite/probable stent thrombosis	65 (2.1)	40 (1.3)	1.59 (1.07-2.35)	0.0214	1.57 (1.06-2.33)	0.0262
Myocardial infarction, definite/probable stent thrombosis, or stroke	74 (2.4)	44 (1.4)	1.65 (1.13-2.39)	0.0089	1.67 (1.14-2.44)	0.008


Clinical Outcomes at 12 Months According to Duration of DAPT in Patients' Age -65 Years of Age

 The difference was driven by a higher risk of MI in patients with short-term DAPT.

Lee & Hong et al. 2018 JACC interv

Events of MI, ST, or Stroke at 12 Months Stratified Based on Short- and Long-Term DAPT, and Grouped by Patient Age (Either <65 or ≥65 Years of Age)


	=6-Month DAPT (n = 2,635)	12-Month DAPT (n - 2,684)	Unadjusted HR (95% CI)	p Value	Adjusted HR (95% Cl)	p Value
All-cause death	76 (2.9)	66 (2.5)	1.18 (0.85-1.64)	0.3231	1.15 (0.83-1.60)	0.4110
Cardiac	45 (1.7)	42 (1.6)	1.11 (0.73-1.68)	0.6417	-	-
Noncardiac	31 (1.2)	24 (0.9)	1.31 (0.77-2.24)	0.3147		-
Myocardial infarction	41 (1.6)	55 (2.1)	0.77 (0.52-1.16)	0.2085	0.80 (0.53-1.20)	0.275
Definite or probable stent thrombosis	14 (0.5)	14 (0.5)	1.04 (0.49-2.17)	0.9271	-	-
Stroke	17 (0.7)	22 (0.8)	0.79 (0.42-1.48)	0.4607	-	-
Bleeding	39 (1.5)	63 (2.4)	0.63 (0.42-0.94)	0.0248	0.64 (0.43-0.95)	0.027
Major	13 (0.5)	29 (1.1)	0.46 (0.24-0.88)	0.0196	-	-
Minor	27 (1.0)	35 (1.3)	0.79 (0.48-1.31)	0.3585	-	-
Myocardial infarction or definite/probable stent thrombosis	47 (1.8)	58 (2.2)	0.84 (0.57-1.23)	0.3703	0.86 (0.58-1.27)	0.443
Myocardial infarction, definite/probable stent thrombosis, or stroke	64 (2.4)	80 (3.0)	0.82 (0.59-1.15)	0.2487	0.84 (0.60-1.16)	0.285

- Short-term DAPT was associated with increased risk of ischemic events in younger patients, but not in elderly patients.
- Major bleeding risks significantly increased in longterm DAPT in elderly patients

Lee & Hong et al. 2018 JACC interv

Risk of primary outcomes with short-term DAPT (vs. longterm) decreased according to the quintile of age !

Unadjusted hazard ratio and 95% CI were represented as line and dotted line, respectively.

Major Bleeding Events: All Patients

WHAT IS KNOWN? Qualified studies (i.e., patient-level meta-analyses from randomized trials with larger number of patients) to evaluate the optimal duration of DAPT in DES-treated elderly patients have been very limited. Consequently, the optimal duration of DAPT among elderly patients remains controversial.

5.0-

4.0-

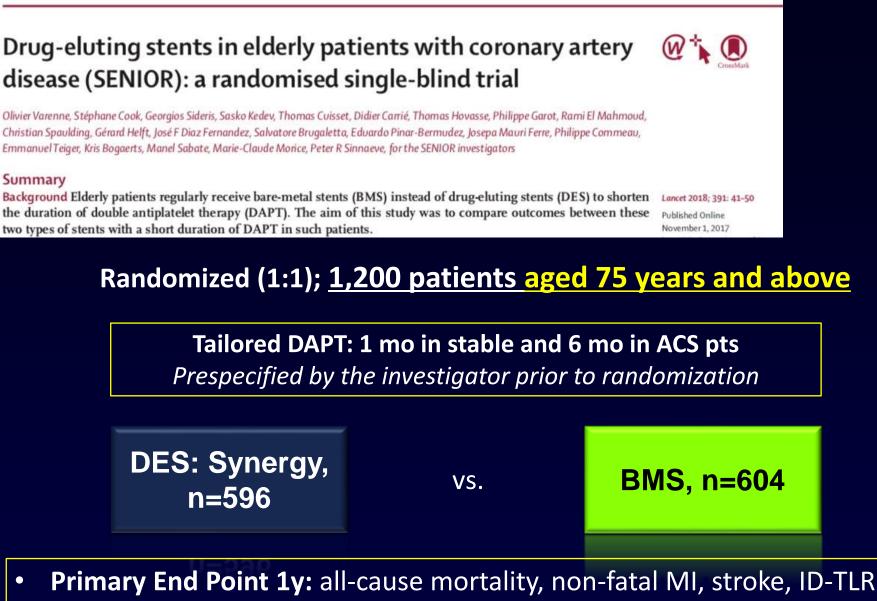
3.0-

2.0-

1.0-PERSPECTIVES

Major bleeding (%)

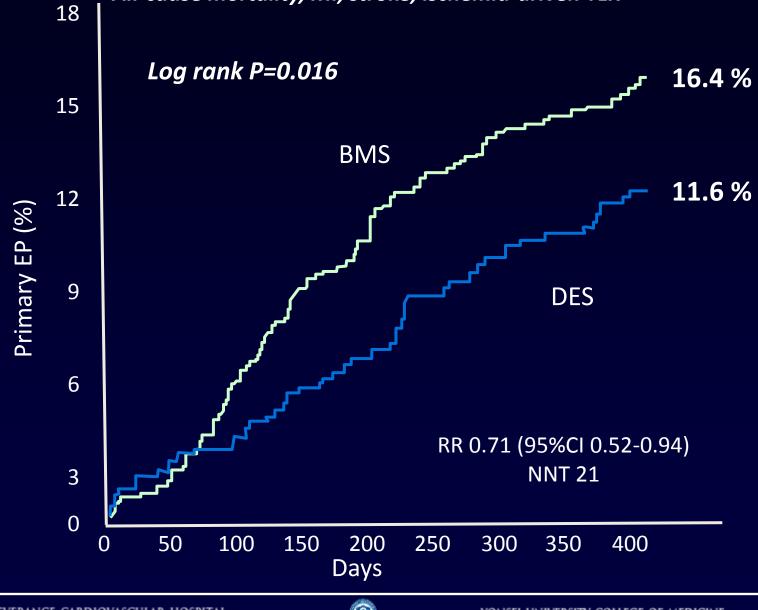
WHAT IS NEW? Short-term DAPT after next-generation DES implantation, compared with long-term DAPT, may be more beneficial in elderly patients than in younger patients.


WHAT IS NEXT? Further randomized studies to evaluate optimal duration of DAPT in elderly patients receiving new-generation DES are required.

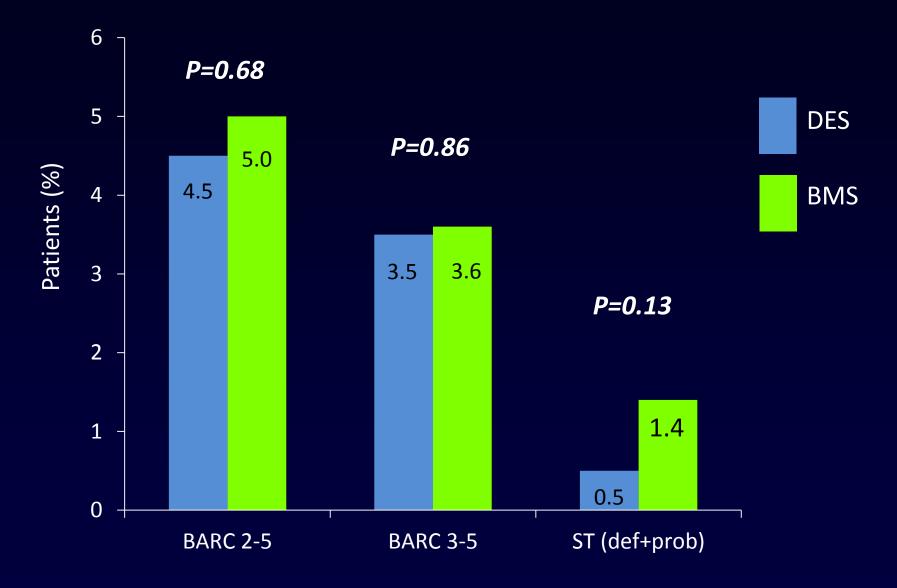
(IIIX-0.50; 95% CI=0.30 to 0.84;

(HR=0.46; 95% CI=0.24-0.88; p= 0.0196).

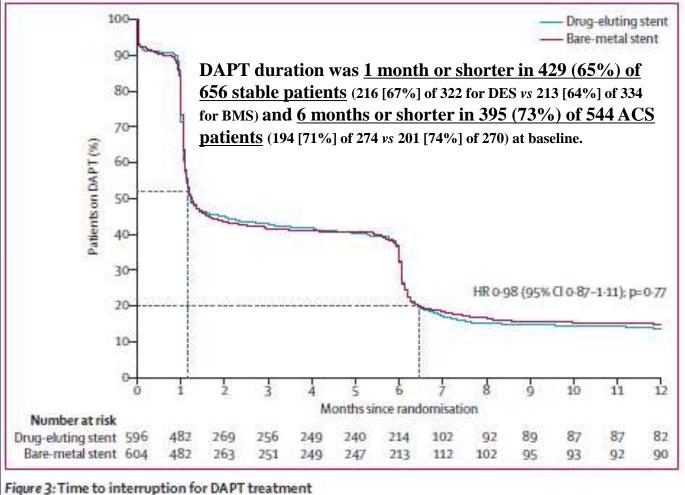
Lee & Hong et al. 2018 JACC interv


• Secondary End Points 1y: Bleeding BARC 2-5/3-5, stent thrombosis

Varenne O. et al. Lancet. 2017

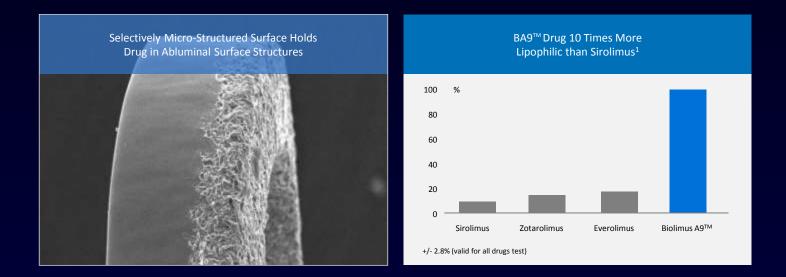

Primary End Point

All-cause mortality, MI, stroke, ischemia-driven TLR



Safety Endpoints

SENIOR randomized trial


No patients were censored. DAPT=dual antiplatelet therapy.

Evolution of DES Technology

		1 st Generation		2 nd Generation				
Durable Polymer	Cypher	TAXUS Express	TAXUS Liberte	Resolute Integrity	Xience Alpine	Promus PREMIER		
Stents								
Strut Thickness	140 µm	132 μm	96 µm	89 μm	81 μm	81 µm		
Coat Thickness	7µm / side	16µm/side	14µm/side	6μm / side	8µm / side	8µm / side		
Bioabsorbable Polymer	Biomatrix	Nobori	MiStent	<u>-</u> Orsiro	Synergy	Ultimaster		
Stents								
Strut Thickness	120 μm	125 μm	64µm	60µm	74µm	80µm		
Coat Thickness	10 µm	20 µm	5μm luminal 15μm Abluminal	4-7µm / side	4 µm	14 µm		
	1 st Generation Future Technologies							
	BIOFREEDOM	Drug Filled Stent		BVS	ELIXIR DESolve	DREAMS II		
Polymer Free Stents			Fully Bioresorbable Stents					
Strut Thickness	112	86		150 µm	150 µm	150 μm		
Coat Thickness	NA	NA		3 μm / side	<3 µm / side	8 µm / side		

BioFreedom™ Drug Coated Stent (DCS)

- Avoid any possible polymer-related adverse effects
- Rapid drug transfer to vessel wall (98% within one month)
- <u>Good fit with short DAPT</u>

LEADERS FREE Trial

Prospective, double-blind randomized (1:1) trial 2466 High bleeding risk (HBR) PCI patients

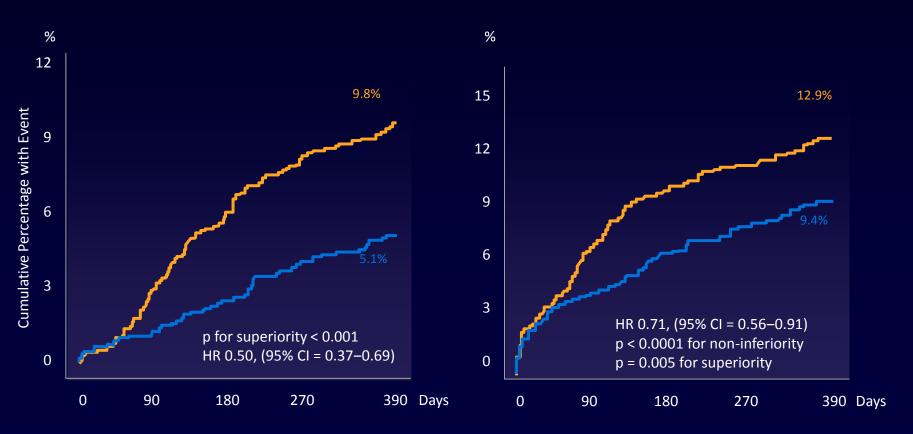
DAPT mandated for 1 month only, followed by long-term SAPT

• Primary safety endpoint:

Composite of cardiac death, MI, definite/probable stent thrombosis at 1 year (non-inferiority then superiority)

 Primary efficacy endpoint: Clinically-driven TLR at 1 year (superiority)

Urban P et al. N Engl J Med 2015;373:2038-47


Primary Endpoints at 1 Year

Urban P et al. N Engl J Med 2015;373:2038-47

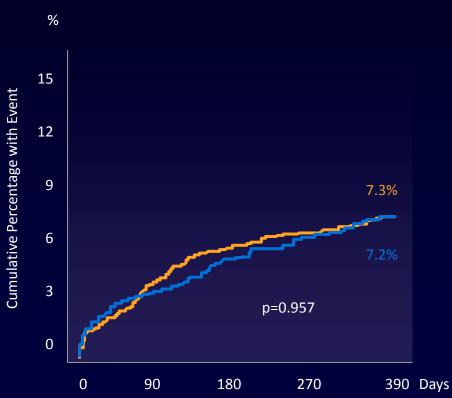
Efficacy (cd-TLR)

Safety (cardiac death, MI, ST)

LEADERS FREE Trial

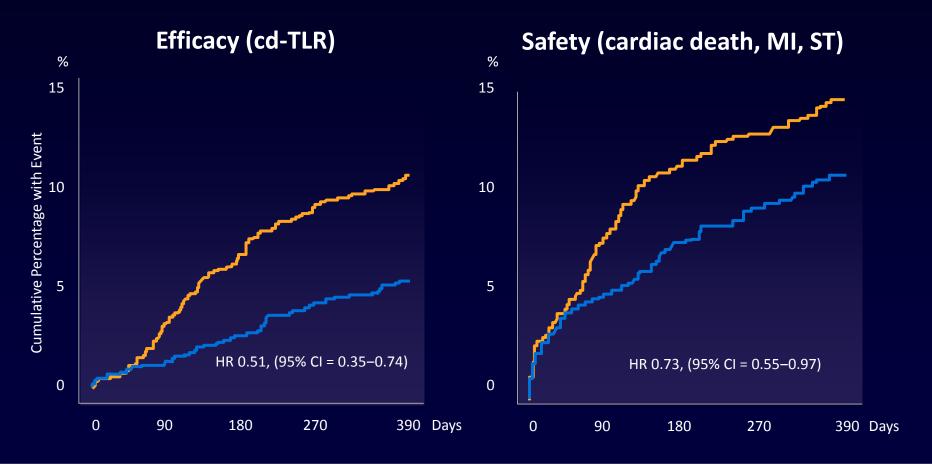
Table 2. Primary and Secondary End Points.*

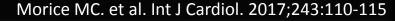
End Point	Drug-Coated Stent (N = 1221)	Bare-Metal Stent (N=1211)	Hazard Ratio (95% CI)	P Value		
	no. of events (% of patients)					
Primary safety end point: cardiac death, myocardi- al infarction, or stent thrombosis	112 (9.4)	154 (12.9)	0.71 (0.56–0.91)	0.005†		
Primary efficacy end point: clinically driven TLR	59 (5.1)	113 (9.8)	0.50 (0.37-0.69)	<0.001		
Death						
From any cause	97 (8.0)	108 (9.0)	0.89 (0.67–1.17)	0.39		
From cardiac causes	50 (4.2)	63 (5.3)	0.78 (0.54-1.14)	0.20		
Myocardial infarction:						
Any	72 (6.1)	104 (8.9)	0.68 (0.50-0.91)	0.01		
Q-wave infarction	6 (0.5)	7 (0.6)	0.85 (0.29-2.53)	0.77		
Non-Q-wave infarction	57 (4.8)	80 (6.9)	0.70 (0.50-0.98)	0.04		
Undetermined type	10 (0.8)	25 (2.1)	0.39 (0.19-0.82)	0.01		
Stent thrombosis‡						
Definite or probable	24 (2.0)	26 (2.2)	0.91 (0.53-1.59)	0.75		
Definite	16 (1.3)	17 (1.4)	0.93 (0.47-1.84)	0.84		
Probable	8 (0.7)	9 (0.8)	0.88 (0.34-2.28)	0.80		
Possible	25 (2.2)	27 (2.3)	0.91 (0.53-1.57)	0.74		
Acute	5 (0.4)	5 (0.4)	0.99 (0.29-3.43)	0.99		
Subacute	7 (0.6)	10 (0.8)	0.69 (0.26-1.82)	0.45		
Early: acute + subacute	12 (1.0)	15 (1.2)	0.79 (0.37–1.70)	0.55		
Late	13 (1.1)	11 (1.0)	1.17 (0.52–2.61)	0.70		



Major Bleeding at 1 Year

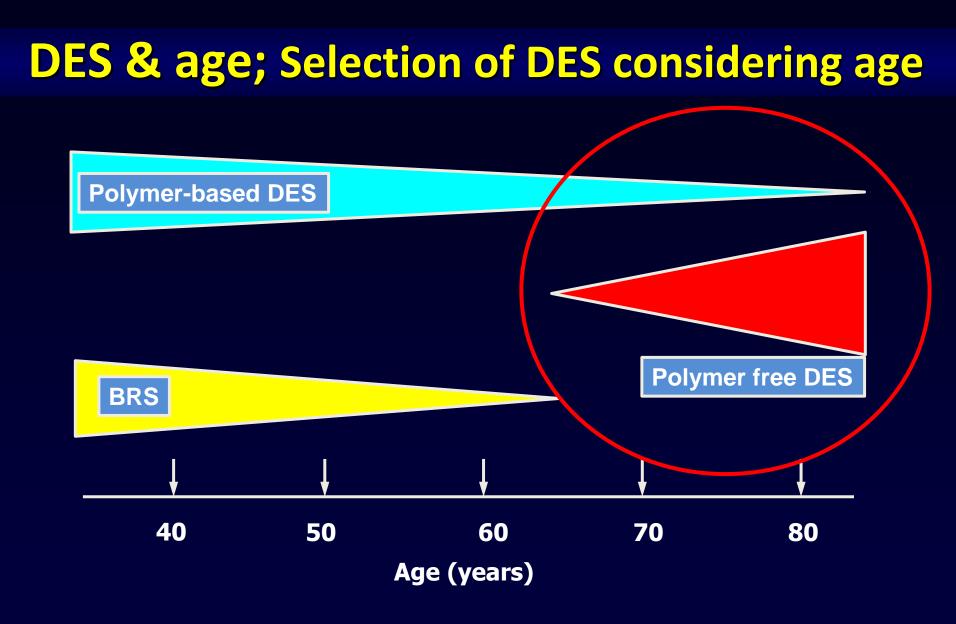
Urban P et al. N Engl J Med 2015;373:2038-47


BARC 3-5


Subgroup Analysis: Elderly Patients

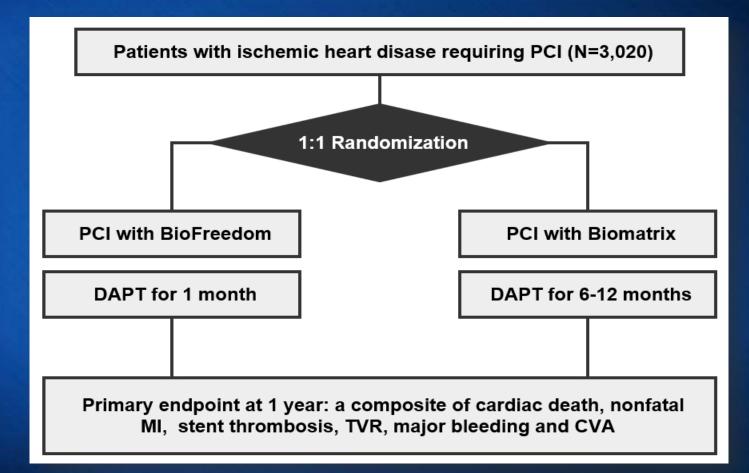
All patients from the LEADERS FREE trial <u>aged 75 or more</u> who completed follow-up were included in this analysis (n=789; 68.4% of the overall trial HBR patients).

2


SEVERANCE CARDIOVASCULAR HOSPITAL

Short-term DAPT in Elderly Patients

- In elderly patients receiving newer-generation DES, short-term DAPT may reduce major bleeding events without an increase of ischemic events compared to long-term DAPT.
- Polymer-free DES can further could improve the safety of stent therapy in elderly patients.

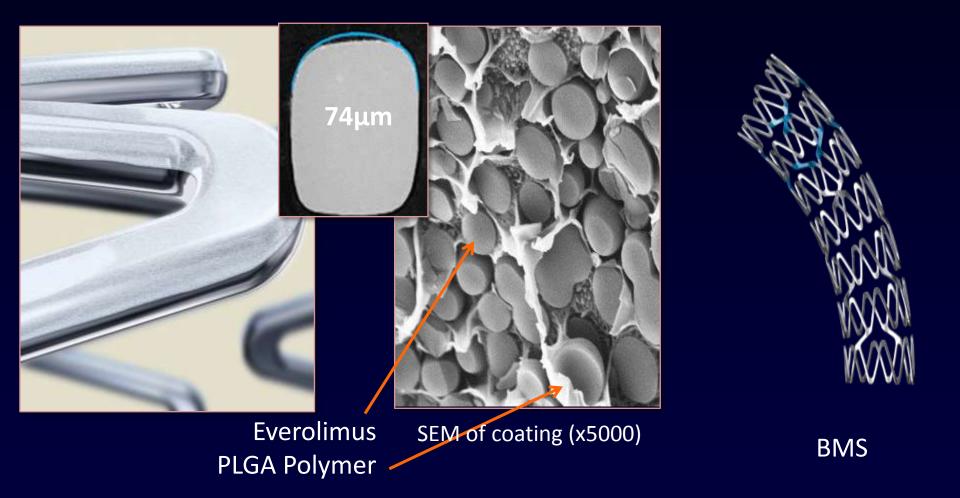


- Elderly patients received more non-cardiac surgery compared to younger patients.
 - → Physicians are advised to carefully select DES type in treatment of the patients aged 62 years and older considering the possibility of cessation of DAPT.

Polymer-free DES implantation with short-term (1 month) DAPT may be a reasonable treatment modality in elderly patients.

Active Ongoing -A Randomized Controlled Comparison Between One vs. More Than Six Months of DAPT After Biolimus A9-eluting Stent Implantation ; <u>ONE-Freedom trial</u>

• This study provide the more clear answer regarding Biofreedom with 1-month DAPT comparing DES with conventional DAPT, including the effect of age on outcomes



Q

.

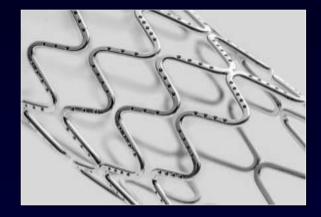
Synergy[™] DES used in SENIOR

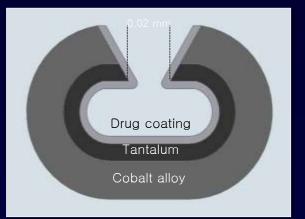
Meredith I. et al. EuroInterv 2017

SENIOR Randomized Trial

- Objective: To evaluate outcomes with a thin-strut, bioabsorbable polymer DES vs. BMS in elderly patients (≥ 75 years old) treated with short DAPT
- Hypothesis is that DES have:
 - a lower rate of MACCE at 1 year vs. BMS (efficacy)
 - a similar risk of bleeding at 1 year vs. BMS (safety)
 - a similar risk of stent thrombosis at 1 year vs. BMS (safety)

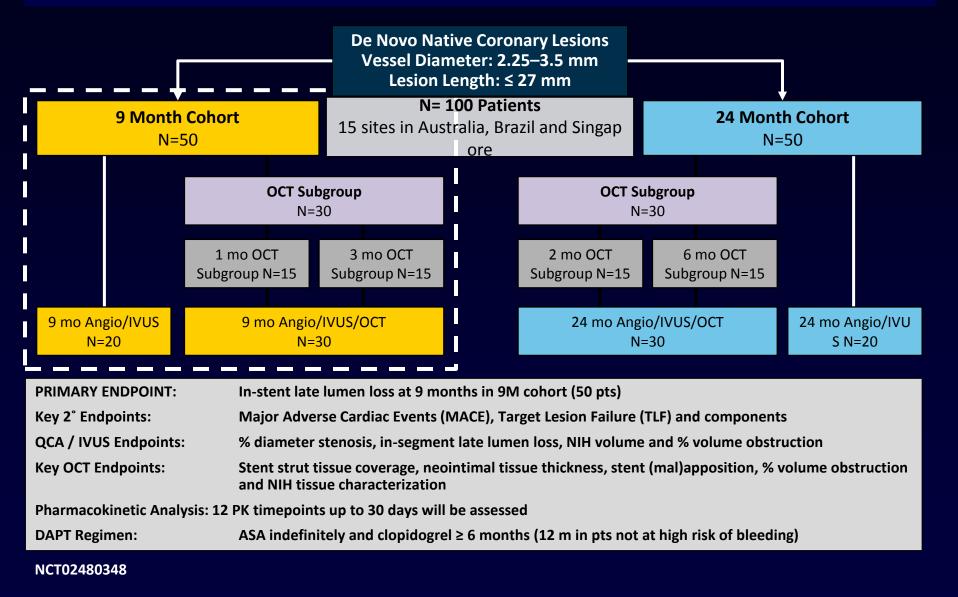
Varenne et al, Lancet 2017



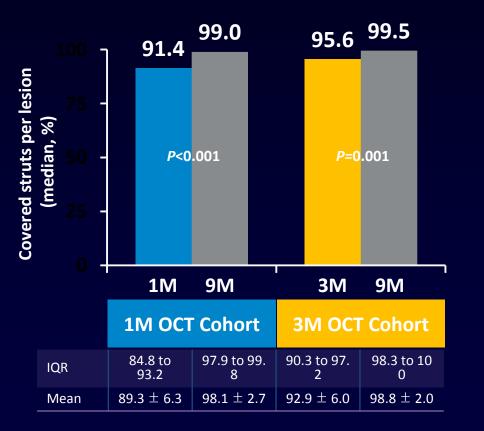

Drug-Filled Stent

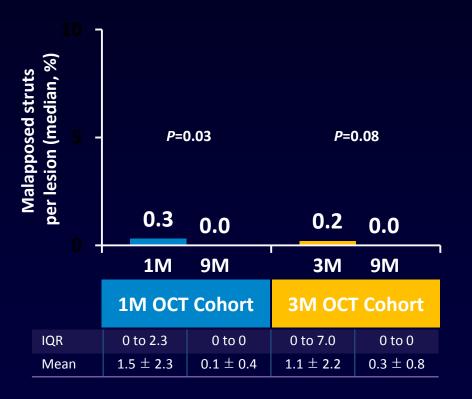
DFS is a novel polymer-free drug-eluting stent (81µm struts)

DFS is made from a tri-layer wire:


- Outer cobalt alloy layer for strength
- Middle tantalum layer for radiopacity
- Core material is removed and becomes an inner lumen that is continuously coated with drug

RevElution Trial




RevElution Trial

OCT Results at 1, 3 and 9 Months

Covered Struts

Malapposed Struts

Worthley S, et al. JACC Interv. 2017;10(2):147-156.

